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The results of the projection operator formalism for nuclear reactions are
evaluated for gamma ray processes. A direct term and a resonance term in the
Breit-Wigner form are obtained. The usual expression for the gamma ray
width is found to be incomplete. One must also inelude the process in which the
compound nucleus decays by particle emission but the latter radiates on the
“way out” via the direct gamma ray interaction. The analogue of the Ward

identity for many-body systems is derived.
I. INTRODUCTION

In presenting this paper we have two purposes in mind. In the paper “Unified
I'heory of Nuclear Reactions 11”7 (1)" it was asserted that the emission or ab
sorption of gamma s could be treated on exactly the same footing as the

emission or absorption of heavy particles. We intend to justify this remark and

thus show how gamma ray processes fit naturally into the reaction formalism
developed in II. This formalism includes explicitly the so-called direct inter
action mechanism so that our discussion will lead to a formalism for the direct
interaction between gamma rays and nuclei. The direet interaction will also
affect the expression for the gamma ray widths while the existence of the com
pound nucleus will modify the direct interaction

Some of these matters have been discussed earlier. Lane and Thomas (3) have
extended the Wigner R matrix formalism so as to include gamma ray interac
tions. Direct interaction of gamma rays has been studied by many authors in
cluding Christy (4), Lane and Lynn (5), and Guth, Francis and Goldman (6).
(. Shakin (7) has used a particular realization of the formalism of IT but his
derivation is valid only when the radiation width is small compared to the
particle width.

“ CERN Ford Foundation Fellow. On leave from Massachusetts Institute of Technology,
Cambridge, Massachusetts, U.S.A

o be referred to as 1. An earlier paper (2) will be referred to as I
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[I. GENERAL THEORY

We start with the following formulas derived in IT valid in the region in which
the compound nuclear resonances are isolated. The transition amplitude 5 for a
given reaction & — B may be written as the sum of two amplitudes; the direct

and the resonant, viz
IB|a)
Here 3, has the Breit-Wigner form

Ws "Hro®)(@Harda
E — B, + in(®,Hopd(l) — H')H p®

Ie(B | a)
where H is the Hamiltonian of the entire system, I is a projection operator on
the open channel subspace discussed in I1, (1 P), and

Hpq PHQ Hqq QHQ ete
The function @, is a normalized bound state eigenfunetion of the operator /o
H oo, &P, (2.3

I, is shifted from &

®,H, ok ra®
Lo B

We may define a projection operator for @, as follows

and

Then H' is given by

H' = Her + Hro o, ’”W Hor

The functions ¢, and 5 are solutions of the Schroedinger equation
H'y = Ey (2.6)

the superseripts (+) and (—) denoting as usual diverging and converging solu

tions, while the subseripts (a) and (8) refer to possible incident plane waves (or

if either necessary or convenient distorted incident waves). Finally, 3, is the

In the gamma ray case the energy shift is finite only if the appropriate self-energy

subtraction of quantum electrodynamics is made
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transition amplitude which follows from Eq. (2.6). We shall not repeat our dis
cussion of these formulas as given in I1. We need only mention here that we have
separated the amplitude into two terms, one of which varies slowly with the
energy and which, therefore, is referred to as direet or potential interaction while
the second varies rapidly with £ and is the compound nucleus term

To apply (2.1) to a particular case it is only necessary to specify H, the
Hamiltonian and P, the projection operator on the open channel subspace. o1
our present problem, it is convenient to break [/ up into the usual three parts:

(i) the heavy particle Hamiltonian, /¥, which deseribes the interaction in the
absence of an electromagnetie field,

(ii) H”, the Hamiltonian for the free radiation field, and

(iii) H™™, that part of the Hamiltonian deseribing the interaction between the
nucleons and radiation

We shall approximate H™ by its “single photon” part so that

Y :ZJA (2.7)

where j; is the current density for the ¢th proton and A, the vector potential
Consistent with this approximation we shall consider only the open channel
zero-photon and one-photon states. Iurther only a single one photon state is
required; namely, that one which describes the particular photon of energy fiw
whose emission or absorption is being considered. The corresponding open

channel projection operator is then:
1 Ppi” + PiVpi ) (2.8

where 20" is the heavy particle projection operator which projects out those
residual nuclear states which are possible when there are no photons emitted
(or absorbed) while Pi* projects out the possible residual nuclear states asso
ciated with the emission (or absorption) of a photon of a given frequency. These
heavy particle operators have been discussed in I1. The operators py” and p

project out the zero-photon state vector and the one-photon state vector de

seribing a photon of frequency w respectively. Hence
i 0
F'rom the restriction to zero- and one-photon states it follows that
) = QMpi” + QiVpi Q+ Q (2.9

We have now completed the definitions of the various symbols which occur in
(2.1) and (2.2). These equations and the associated definitions provide the
kinematical framework needed for the discussion of gamma ray resonance and
direct reactions. However, it would be most useful and as we shall see illumi
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nating to re-express some of the quantities, particularly the matrix elements in
Sz and 3, in more familiar terms. The absence of an immediate correspondence
stems from the fact that P and @ involve both heavy particles and the photon
and it is thus important to disentangle these two aspects as much as possible

Our first step in this program is to make the zero- and one-photon parts of the
interactions and wave functions ¢, ¢ ’, and @, explicit. Let us consider the
function ¢ first and let the zero-photon part of ¥, P, be ¢(0) while the one
photon part, Py, is denoted by ¢(1). Finally, note that since H" operates only
on open channel wave functions that

H PH'Py + PH'P, + PH'P, + P,H'P, (2.10)

’

We then obtain the following equations for ¢(0) and ¢(1):
(E — Hy)$(0) = (PH'Py)y(1) 2.11a)
fiw — Hy )Y(1) = (PH'Py)y(0) (2.11b)

A , ; 12 :
Here Hy is just the operator /" in the absence of electromagnetic interaction,

.8,
Hy = H'(e = 0)

This pair of coupled equations gives a stationary state formulation of the direct
interaction absorption and emission of radiation. Note that in the absence of the
radiation terms on the right hand side of (2.11), the equations for ¢(0) and ¢(1)
are simply the direct interaction Schroedinger equations with available energy
I and (F — fhw) respectively. The radiative terms couple these two states but
because the interaction is relatively weak we can still classify the solutions of
(2.11) as being either principally one-photon (available energy for heavy parti
cles I/ — hw) or zero-photon states respectively. We shall indicate which solution
we are considering by a subseript. The coupling terms ( PH'P, + P.H'Py) con
tain not only the usual H™ but also terms arising from Hpglg./ (£ — Hoq)|H o
These inleraction terms as we shall call them are a consequence of the momentum
dependence (or in other words the nonlocality) of the effective Hamiltonian for
direct interactions and potential scattering. We shall discuss the interaction
terms more explicitly in Section I11, but for the present we shall need only their
formal representation.

The transition matrix for direct interaction gamma ray processes can be readily
obtained from (2.11). We find:

3,8 @) = (Wi (1) PLH'Papst (0) (2.12)

The function Y.y (0) is a solution of the homogeneous form of (2.11a), s (1)
of (2.11b).

Equations similar to (2.11) can be written for the zero- and one-photon parts
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of ®, . Denoting these by ®,(0) and ®,(1) respectively we obtain
(& HD)3.(0) = Hgy ®,(1
(2.13)

(8) = fio — SR )@ (D)= H &g ‘(0

We have omitted the P, operations in these equations since their presence is
indicated by the nature of the functions upon which the Y and H™ operate
Note again that there are two sets of eigenvalues, &, , for this pair of coupled
equations corresponding to states whose principal component is a zero- or one
photon state. The mixing of these corresponds to the possibility of these states
absorbing or emitting a single photon of energy fiw. The energy of the “zero
photon” state is approximately & Y the wave function ®{"’ the energy and wave
function in the absence of radiation. To the same approximation the one-photon
state is also deseribed by the wave function &Y but its energy is, of course,
& + ho.

Finally, we can write down the matrix elements in Eq. (2.2) in a form in which

the electromagnetic terms of Hgp are explicitly given. For (P Horbay' ) we find.
@ Hop$y = @,(0)Hep$”(0)) + @.(0)Hyrpa (1)
F @, () HY P (1)) + @,(1)HEra ' (0))

(2.14

Similarly
(s Hpa® Wi (0)HY ¢,(0)) + (s (1) HEg®,(0))
+ WO )HY @) + s (0)HEg®,(1))

(2.15

With these equations (2.11), (2.13), (2.14), and (2.15) it becomes possible to
extract the major dependence on the electromagnetic coupling for the product of
the matrix elements for the possible channels as they occur in the numerator of
the resonance term, (2.2).

(i) Consider first the nonradiative channels. In this case ¥ap (0) are of zero
order while 5 (1) are of first order in the electromagnetic coupling. Ior the
wave function @, , we take that solution of (2.13) for which ®,(0) is of zero
order, ®,(1) of first order. The other solution leads to second order corrections.
For these ¢ and ® functions we find

(s Hp®)@,Horba ') = (Y (0)HY®,(0))@,(0)Hgmbab )

+ terms of second order

(2.16)

This is just the result which prevails in the absence of radiation so that the ex
pression for particle width (7, 2) 1s not modified by the electromagnetic inter

action.
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(ii) We consider next the radiation channel in which a photon is emitted. For
this channel, the zero-photon part of the incident wave function, ¢, (0), is of
zero order, while w4 (1) is of first order. The situation is reversed for the emer
gent, channel wave funetion for ¢ (1) is now of zero order while 5 " (0) is of
first order. Turning to the compound nucleus state ®, we shall first consider the
most interesting physical case in which ®,(0) is the principal term while ®,(1

is of first order. We then find that

@ H oS @,(0)Hygt' (0)) + terms of second order 2.17)
while
W Hpg®) = Wit (0)H Y g,0(0)) + Wsr” (1) HigP,(0 b
(2.18)

+ (s (1 ) H 3 o®,0(1 + terms of second order

In this last equation we need to make the first order character of the first and
third term explicit by substituting for ¢ "(0) from Eq. (2.11) and for ®,(1)
from (2.13). We obtain

: I :
Vs Hpo® OB //,\,:; A Hyq
il

, v
+ P.H P, . Hpqp ©,(0)

: BF—Hy "
An important simplification in this result is possible as a consequence of the
relation between the full wave function Wy deseribing the final state and its

projection on the open channel ¥5

W {1 1 . - //,),‘l\p., ( (2.20)
- E — fiw — Hyq 2

Disregarding the small difference between £ and &, (since we are dealing with

the resonant term) (2.19) becomes:

(s Hpo® (W (1) H™®,,(0)

v (1) Py H' Py = AH g 3,,(0)

H
The first of these terms is the familiar form which is commonly employed in the
caleulation of radiation widths. The second is an important correction arising
from a process in which the compound nucleus decays by particle emission via
H7 but the system on the “way out” according to (1/4 Hy') radiates
via (PH'Py). If we take the contribution of the é-function part of the propaga
tor in the second term we obtain a contribution to the width arising from radia
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tion in the wave zone only. That this term must exist was first emphasized by
I'rancis (8) and has been the major subject treated by Shakin (7). The existence
of this second mode of decay, if it is sufficiently uncorrelated with the familiar
first term of (2.21), may have an important effect on the statistics of the gamma
ray widths. This conjecture needs further investigation

We turn next to the case where the compound state ®, contains a single photon;
i.e., the zero order component is ®,(1). As can be verified by following through
the considerations just above (in the present case the zero order wave functions
are Yao(0), s (1), and &, (1); the first order Yao(1), ¥ (0), $,(0)) this case
would require that the compound nucleus be formed upon the emission of the
photon. Clearly a resonance can oceur only if an eigenvalue of H%, falls near
K fiw, the energy available to the nuclear system affer the emission. Thus
this type of resonance can only occur for (n, n'y) reactions and will not con
tribute to the (n, v) reaction under discussion here. With regard to the (n, n'y)
reaction it is clear that the amplitude for this resonance process in which the
compound nucleus is formed after photon emission is equal in importance to
the processes discussed earlier in which the radiation is emitted after the forma
tion of the compound nucleus. The results which apply when the emitted photon

is in the dw/w part of the spectrum have been discussed elsewhere (9).
ITI. DIRE GAMMA RAY INTERACTIONS AND GAUGE INVARIANCE

The effective interaction through which the direct gamma ray processes
proceed, PyH Py, has only been given in this symbolic form. It is possible to
be somewhat more explicit by inserting (2.5) for H' and extracting the first
order electromagnetic terms. However, no useful purpose is served by exhibiting
these lengthy formulas unless a specific form of the nuclear projection operators
is used and the indicated caleulations performed.

In this section, we examine the question as to how much information on the
clectromagnetic interaction can be obtained from the momentum dependence,
i.e., the nonlocal nature of Hy'. Tt has often been suggested that this momentum
dependence implies an additional electromagnetic interaction which could be
obtained via the substitution p — p eA/e. An equivalent remark points out
that the veloeity operator, computed as the commutator of r and the effective
Hamiltonian, differs from p/m when the Hamiltonian is momentum dependent
and, therefore, the electromagnetic interaction term v. A will have a modified
momentum dependence. Both of these points of view lead to the suggestion
that one should take the current vector associated with a proton as oHy'/ap
where p is the momentum operator for the proton

We shall now look into this question limiting the applicability of our con
siderations by the following assumptions. First we assume that our particles

are spinless so that the complete electromagnetic interaction is given by re
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placing p; by p ¢/¢ A, in the Hamiltonian H describing the complete system.
Secondly we shall consider the full effective Hamiltonian so that resonance

terms are included.

H 1 Hpp + Hpq = T Hgr BT

This will deseribe direct interactions when the energy £ is between widely

spaced resonances. The electromagnetic interaction following from (3.1) is:

— [ 0H" oH" 1 N
W) L‘/("'lrI) A)I‘ ; w(",}é A)q/_ o (H"ar
< C Y sy Qu

e
M e (",” .A>/'
= T \ED

L S G LRI N e B
T D =T

We now compare this with the results obtained by differentiating (HY¢) with

respect to one of the momentum operators, say p.

Ol a . . 1 . > '
> eff ) ) ) b i (‘ (lll I; I (3.3)
I P=1 5 </ H'P + PH"Q s 0

ap F
Note, and this is most important, that d/dp operates on the projection operator
P and Q as well as in HY. In this connection, the following results are useful:
P DRSSO 0
Jp Jp
{)l‘ i» = (0 ",’I‘
ap Jp
0Qp_ o
Jp Jp
Q _ 0
ap Jp

r

and finally that
ar a0
ap ap
With the aid of these rules it is an easy matter to calculate the right hand side

of (3.3). We obtain
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Wy + LS

o gg N ATy ey
"'”‘”I' /‘nll P /,ull 0 1 e
~ Heoq ™ 9P

B : :
Ip ap p "E — Hgq
oH" 1
+ Hrq — —Q (1) 1R
E — Hgo E — Hgq
4 N.\q OF 1 | ORI
b (B — (HY)) 3= — w Hor + Hio — e ()
9p E — Hgq E — Hgq 9P
Comparing (3.6) and (3.2) we see that for the matrix element of the gamma ray
interaction we can take the current vector J for the system as Z OH Y /dp; in
the limit of w, the photon momentum and energy going to zero. The restriction
to the limiting value of zero-photon momentum is a consequence of the pos
sibility of radiative processes occurring while the incident particle and the
target nueleus form a compound system, as is indicated by the fourth term on
the right hand side of (3.2). Our result is then

J— > . 0HY/op: as @—0

the sum being taken over the protons only. Equation (3.7) is the analogue fo®
many-body systems of the Ward identity in quantum electrodynamics (10).
It can be employed to obtain the effective nuclear charge as a function of p
but this would be valid only in the limit o — 0

The condition @ — 0 implies that (3.7) is applicable only to electric dipole
transitions. Equivalent results have been employed in the caleulation of the
cross section for long wavelength bremsstrahlung associated with a reaction
(9, 11). The cross section for this process can be expressed completely in terms
of the reaction amplitudes in the absence of radiation and is otherwise insensi
tive to the details of the nucleon—nucleus interaction. For electric dipole transi-
tions involving bound states it is possible to replace dH y/dp by the commutator
of Hy with r and so the matrix element can be reduced to one of r. The electric
dipole operator is independent of the momentum dependence of the Hamil
tonian, the influence of the latter residing entirely in the initial and final wave
functions employed in the evaluation of the matrix element. This is just Siegert’s
theorem. We therefore conclude that in the region in which (3.7) is valid we
can obtain no direct evidence on the momentum dependence of the nucleon
nucleus interaction. IFor all other situations, namely, those in which the space
dependence of the electromagnetic potentials enters, the gauge substitution
p— p — ¢A/cis generally not correct. It is valid only for electrie dipole transi

tions.

10
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We then obtain the following equations for LP \/’) and LP (:\;

(E —kw - H) Y0 2P H'P o)

Here HI:I is just the operator H' in the absence of electromagnetic interaction,

i.e.,
Hy=Hl(e=0)

This pair of coup equations gives a stationary state formulation of the direct
interaction absorption and emi on of radiation. Note that in the absence of
the radiation terms on the right hand side of (B.11), the equations for ¥ (0)

ply the direct interaction Schroedinger equations with
available energy E and (E - KU ) respectively. The radiative terms couple
these two states but because the interaction is relatively weal can still
classify the solutions of 11) as being either cipally one photon (available
energy for heavy particles E -huw v zero photon states setively., We
shall indicate which solution we are considering by a subscript. The coupling
terms (PO};'P1 2 1‘)4[1'10) cont n 1 the usual 717{” but also terms

) iion terms we shall call

arising from K ,\[1 /(B -H_
PQ—s QQ
them are a consequence of the mome pendence, (or in other words the non-
locality) of the effective Hamiltonian for direct interactions and potential
scattering. We shall discuss the interaction terms more explicitly in Section

C., but for the present we shall need only their fo: p tation.
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